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Abstract

Procedures for detecting change points in sequences of correlated observations (e.g.,

time series) can help elucidate their complicated structure. Current literature on the

detection of multiple change points emphasizes the analysis of sequences of independent

random variables. We address the problem of an unknown number of variance changes

in the presence of long-range dependence (e.g., long memory processes). Our results

are also applicable to time series whose spectrum slowly varies across octave bands.

An iterated cumulative sum of squares procedure is introduced in order to look at the

multiscale stationarity of a time series; that is, the variance structure of the wavelet

coe�cients on a scale by scale basis. The discrete wavelet transform enables us to

analyze a given time series on a series of physical scales. The result is a partitioning of

the wavelet coe�cients into locally stationary regions. Simulations are performed to

validate the ability of this procedure to detect and locate multiple variance changes.

A `time' series of vertical ocean shear measurements is also analyzed, where a variety

of nonstationary features are identi�ed.

Some key words: Cumulative sum of squares; Discrete wavelet transform; Homogeneity

of variance; Maximal overlap discrete wavelet transform; Vertical ocean shear.
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1 Introduction

In many �elds, such as the physical sciences and economics, the hypothesis that a process

is composed of many features which occur at di�erent scales is quite natural. Recently,

attention has been given to identifying and modelling so-called long memory processes. A

common model for such processes is that the observations Y0; : : : ; YN�1 constitute one por-

tion of a stationary Gaussian fractionally di�erenced (FD) process Yt. This process can be

represented as

Yt =
1X
k=0

�(k + d)

�(k + 1)�(d)
�t�k;

where the long memory parameter jdj < 1
2
, and �t is a Gaussian white noise process with

mean zero and variance �2� . The spectral density function (SDF) for this process is given by

S(f) = �2� j2 sin(�f)j
�2d for jf j � 1

2
. When 0 < d < 1

2
, the SDF has an asymptote at zero,

the process exhibits slowly decaying autocovariances and constitutes a simple example of

a long memory process; see Granger and Joyeux (1980), Hosking (1981), and Beran (1994,

Sec. 2.5).

In practice, one may question if the process are truly stationary, or composed of several

stationary segments. We prefer to view this problem by considering a time series with an

unknown number of variance change points. A number of methods have appeared in the

literature for investigating the presence of multiple change points. Hinkley (1971) studied

the use of cumulative sum tests for detecting a change point and then estimating its loca-

tion, which are adaptable to the presence of multiple change points through a sequential

algorithm. Haccou and Meelis (1988) proposed a hierarchical likelihood ratio test for de-

termining the number of change points in a sequence of exponentially distributed random

variables, and Meelis et al. (1991) generalized the well-known test by Pettitt (1979) into

a Kruskal{Wallis test for determining the number of change points in a sequence of inde-
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pendent random variables. Incl�an and Tiao (1994) investigated the detection and location

of multiple changes of variance in sequences of independent Gaussian random variables by

recursively applying a cumulative sum of squares test to pieces of the original series. Chen

and Gupta (1997) utilized the Schwartz information criterion in order to both detect and

locate multiple changes of variance. Recently, Khalil and Duchêne (1999) compared autore-

gressive and multiscale approaches to identify multiple events in piecewise stationary time

series with application to uterine electromyogram signals.

The discrete wavelet transform (DWT) decomposes a process into di�erent scales, or

bands of frequency. The DWT has already proven useful for investigating various types of

nonstationary events. For example, Wang (1995) tested wavelet coe�cients at �ne scales

to detect jumps and sharp cusps of signals embedded in Gaussian white noise, Ogden and

Parzen (1996) used wavelet coe�cients to develop data-dependent thresholds for removing

noise from a signal and Whitcher et al. (1998) investigated a single change of variance in long

memory processes. The key property of the DWT that makes it useful for studying possible

nonstationarities is that it transforms a time series into coe�cients that reect changes at

various scales and times. For FD and related long memory processes, the wavelet coe�cients

for a given scale are approximately uncorrelated; see, Tew�k and Kim (1992), McCoy and

Walden (1996) and Whitcher et al. (1998). We propose to test for multiple variance change

points in FD processes using an iterated cumulative sum of squares statistic applied to the

output from the DWT. By testing the output from the DWT we also gain the ability to

identify the scale at which the inhomogeneity occurs. Using a variation of the DWT, the

`non-decimated' DWT, we can estimate the times at which the variance change points occur.

Section 2 provides a brief description of the DWT and `non-decimated' DWT. Section 3

establishes our procedure for testing multiple variance change points. The cumulative sum
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of squares test statistic is de�ned and a bisection algorithm is outlined in order to recursively

test a vector of coe�cients. Simulation results are provided to determine the empirical size

and power of our procedure. Using an auxiliary testing procedure, we also provide a method

for locating multiple variance change points. We apply this methodology to a series of

vertical ocean shear measurements. Not only does the procedure isolate two visually obvious

nonstationary segments, but also a much more subtle region.

2 Discrete Wavelet Transforms

Let h1 = fh1;0; : : : ; h1;L�1; 0 : : : ; 0g denote the wavelet �lter coe�cients of a Daubechies

compactly supported wavelet for unit scale (Daubechies 1992, Ch. 6), zero padded to length

N by de�ning h1;l = 0 for l � L. Let

H1;k =
N�1X
l=0

h1;l e
�i2�lk=N ; k = 0; : : : ; N � 1;

be the discrete Fourier transform (DFT) of h1. Let g1 = fg1;0; : : : ; g1;L�1; 0; : : : ; 0g be the

zero padded scaling �lter coe�cients, de�ned via g1;l = (�1)l+1h1;L�1�l for l = 0; : : : ; L� 1,

and let G1;k denote its DFT. Now de�ne the length N wavelet �lter hj for scale �j = 2j�1 as

the inverse DFT of

Hj;k = H1;2j�1kmodN

j�2Y
l=0

G1;2lkmodN ; k = 0; : : : ; N � 1:

When N > Lj = (2j � 1)(L� 1) + 1, the last N � Lj elements of hj are zero, so the wavelet

�lter hj has at most Lj non-zero elements.

Let Y0; : : : ; YN�1 be a time series of length N . For scales such that N � Lj, we can �lter

the time series using hj to obtain the wavelet coe�cients

Wj;t = 2j=2fWj;2j(t+1)�1;
l
(L� 2)

�
1� 1

2j

�m
� t �

j
N
2j
� 1

k
;
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where

fWj;t =
1

2j=2

Lj�1X
l=0

hj;lYt�l; t = Lj � 1; : : : ; N � 1:

The Wj;t coe�cients are associated with changes on a scale of length �j and are obtained by

subsampling every 2jth value of the fWj;t coe�cients, which forms a portion of one version

of a `non-decimated' DWT called the `maximal overlap' DWT (see Percival and Guttorp

(1994) and Percival and Mofjeld (1997) for details on this transform). In practice the DWT

is implemented via a pyramid algorithm (Mallat 1989) that, starting with the data Yt, �lters

a series using h1 and g1, subsamples both �lter outputs to half their original lengths, keeps

the subsampled output from the h1 �lter as wavelet coe�cients, and then repeats the above

�ltering operations on the subsampled output from the g1 �lter. A simple modi�cation, not

subsampling the output at each scale and inserting zeros between coe�cients in h1 and g1,

yields the algorithm for computing fWj;t described in Percival and Mofjeld (1997).

3 Testing for Multiple Variance Changes

If Y0; : : : ; YN�1 constitutes a portion of an FD process with long memory parameter 0 < d <

1
2
, and with possibly nonzero mean, then each sequence of wavelet coe�cients Wj;t for Yt is

approximately a sample from a zero mean white noise process. This enables us to formulate

our test for multiple variance change points using wavelet coe�cients for FD processes.

3.1 The Test Statistic

LetX0; : : : ; XN�1 be a time series that can be regarded as a sequence of independent Gaussian

(normal) random variables with zero means and variances �20; : : : ; �
2
N�1. We would like to

test the hypothesis H0 : �20 = � � � = �2N�1. A test statistic that can discriminate between

this null hypothesis and a variety of alternative hypotheses (such as H1 : �
2
0 = � � � = �2k 6=

�2k+1 = � � � = �2N�1, where k is an unknown change point) is the normalized cumulative sums
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of squares test statistic D, which has previously been investigated by, among others, Brown

et al. (1975), Hsu (1977) and Incl�an and Tiao (1994). To de�ne D, let

Pk �

Pk
j=0X

2
jPN�1

j=0 X2
j

; D+ � max
0�k�N�2

 
k + 1

N � 1
� Pk

!
and D� � max

0�k�N�2

 
Pk �

k

N � 1

!
:

The desired statistic is given by D � max(D+; D�). Critical levels for D under the null

hypothesis can be readily obtained through Monte Carlo simulations for arbitrary sample

size. Incl�an and Tiao (1994) established the asymptotic distribution of D and also provided

a relationship with the usual F -statistic for testing the equality of variances between two

independent samples and the likelihood ratio.

3.2 Iterated Cumulative Sums of Squares Algorithm

In practice, a given time series may exhibit more than one change in variance. A natural

approach is to test the entire series �rst, split at a detected change point and repeat until

no change points are found. This is known as a `binary segmentation' procedure studied by

Vostrikova (1981), who proved its consistency. Incl�an and Tiao (1994) and Chen and Gupta

(1997) have both recently used this in order to detect and locate variance change points. The

test statistic used by Chen and Gupta (1997) is based on the Schwarz information criterion

(SIC). All subsequent simulation studies were attempted to be duplicated using the SIC

procedure, but we were unable to replicate the empirical size of the test in both Lisp and C

even after correspondence with one of the authors.

We propose to use the iterated cumulative sum of squares (CSS) algorithm to test for

multiple variance changes from the output of the DWT { in e�ect partitioning the series into

stationary segments. Thus, each series of wavelet coe�cients are put through the iterated

CSS algorithm producing a multiscale analysis of the original series. In order to reduce

the computational time we use the asymptotic approximation for the critical values of D.
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This has been shown to be an adequate approximation for sample sizes of 128 or greater

(Whitcher et al. 1998). For a time series Y0; : : : ; YN�1, the iterated CSS algorithm proceeds

as follows (Incl�an and Tiao 1994):

1. Compute the partial DWT (order J) of Y0; : : : ; YN�1, as de�ned in Section 2 using a

Daubechies family wavelet �lter;

2. Discard all coe�cients on each scale that make explicit use of the periodic boundary

conditions;

3. Determine the test statistic D, via the equations in Section 3.1, and record the point

k1 at which D is attained. If D exceeds its critical value for a given level of signi�cance

�, then proceed to the next step. If D is less than the critical value, the algorithm

terminates.

4. Determine the test statistic D for the new time series Y0; : : : ; Yk1�1. If D exceeds its

critical value, then repeat this step until D is less than its critical value.

5. Determine the test statistic D for the new time series Yk1; : : : ; YN�1. Repeat this step

until D is less than its critical value.

6. Go through the potential change points as outlined in the following paragraph.

Incl�an and Tiao (1994) included an additional step when detecting multiple variance

change points. After the bisection algorithm had terminated, each potential change point

was tested again using only those observations between its two adjacent change points. For

example, a vector of length 128 containing potential change points at 26, 69, and 108, would

again test 26 using only observations 1; : : : ; 69, test 69 using observations 26; : : : ; 108 and test

108 using observations 69; : : : ; 128. This was to compensate for an apparent overestimation
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of the number of variance change points. Simulations were run both with and without this

additional procedure. The rejection rates for the �rst two scales were found to change up

to 4% for low variance ratios and up to 1% for larger variance ratios. All tables using the

iterated CSS algorithm include this extra step.

3.3 Empirical Size and Power

Whitcher et al. (1998) established the empirical size of the cumulative sum of squares test

under the alternative hypothesis of a single variance change. Since the iterated procedure

simply utilizes this speci�c hypothesis test recursively throughout the separate scales of the

DWT, the empirical size for the iterated CSS algorithm follows immediately.

The procedure outlined in Section 3.2 was repeated a large number of times for a speci�c

sample size N = 656, signi�cance level � = 0:05 and long memory parameter d = 0:40,

with a partial DWT of order J = 4. A vector of independent Gaussian random variables was

added to the �rst 100 observations of the FD processes. Instead of adjusting the long memory

parameter, the variance of the �rst 100 observations was adjusted { producing variance ratios

between the �rst 100 and subsequent observations of � 2 f1:5; 2; 3; 4g.

Table 1 displays simulation results for the iterated CSS method when detecting one

unknown variance change point for the Haar, D(4) and LA(8) wavelet �lters and scales

�j = 1, 2, 4 and 8; here `D(4)' and `LA(8)' refer to the Daubechies extremal phase �lter with

four nonzero coe�cients and to her least asymmetric �lter with eight coe�cients (Daubechies

1992). We see the iterated CSS procedure does quite well at locating the single variance

change point for all variance ratios. With a ratio of � = 2 or greater, it errs only towards

multiple change points { always indicating at least one change point in the �rst few scales.

For larger variance ratios (� � 3) the procedure produces rejection rates around 90% or

greater in the �rst two scales, and it errs on the side of three or more change-points with

7



Haar D(4) LA(8)

Level 0 1 � 2 0 1 � 2 0 1 � 2

� = 1.5

1 9:5 85.2 5:3 7:6 87.8 4:6 7:3 88.8 3:9

2 58:9 39.8 1:2 58:9 39.7 1:4 60:4 38.5 1:2

3 87:5 12.2 0:3 88:2 11.6 0:2 90:3 9.5 0:2

4 95:1 4.9 0:0 95:2 4.8 0:0 95:9 4.1 0:0

� = 2

1 0:1 93.0 6:9 0:1 93.5 6:4 0:1 94.2 5:7

2 17:7 79.6 2:8 17:9 79.5 2:6 20:6 77.1 2:3

3 69:2 30.1 0:7 71:2 28.2 0:6 77:2 22.4 0:4

4 90:8 9.2 0:0 91:2 8.8 0:0 93:5 6.5 0:0

� = 3

1 0:0 92.9 7:1 0:0 93.6 6:4 0:0 93.8 6:2

2 1:3 95.4 3:3 1:2 95.5 3:3 1:9 95.0 3:2

3 33:8 64.7 1:5 38:3 60.4 1:2 49:4 49.6 1:0

4 79:4 20.6 0:0 80:9 19.1 0:0 87:2 12.3 0:0

� = 4

1 0:0 92.9 7:1 0:0 92.7 7:3 0:0 93.2 6:8

2 0:1 96.3 3:6 0:1 96.3 3:6 0:2 96.5 3:3

3 16:6 81.5 1:9 19:1 79.1 1:8 29:1 69.4 1:5

4 66:0 34.0 0:0 69:1 30.9 0:0 79:4 20.6 0:0

Table 1: Empirical power of iterated CSS algorithm for FD processes (N = 512; d = 0:4)

with one variance change (k = 100). Variance ratios are given by �.

greater frequency.

Table 2 displays simulation results for the iterated CSS when detecting two unknown

variance change points. Again, all tests were performed at the � = 0:05 level. Gaussian

random variables, of length 100, were added to the middle of the series creating two variance

changes at k1 = 250 and k2 = 350. The iterated CSS method once again performs quite well

for small variance ratios � = 1:5, with a slight increase in power as the wavelet �lter increases

in length. For larger variance ratios, the �rst scale gives a maximum rejection rate of 94%

and then hovers around 90% for very large �. All errors in the �rst scale, for higher variance

ratios, are towards overestimating the number of variance changes. The second scale, which

exhibits almost no power for smaller variance ratios, rapidly approaches the 90{95% range
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for � � 3 and errs primarily towards overestimating the number of variance changes also.

The 100% rejection rates for the D(4) and LA(8) wavelet �lters in the fourth scale occurs

because of a reduction, due to boundary a�ects, in the number of wavelet coe�cients below

a minimum established threshold.

3.4 Locating Multiple Variance Changes

As discussed in Whitcher et al. (1998), the DWT su�ers from a loss of resolution by down-

sampling at each level of the transform. An alternative test statistic fD, using the MODWT,

is utilized to estimate the location of multiple variance changes. The procedure involves

much more bookkeeping than in the single variance change scenario, but is easily manage-

able. For each iteration of the algorithm, estimated locations of the variance change points

for both the DWT and MODWT are recorded. The DWT estimates are used to test for

homogeneity of variance and the MODWT estimates are used to determine the location of

the variance change. Obviously, the estimated location of the variance change is discarded

if the test statistic is found not to be signi�cant.

Figures 1{4 displays the estimated location of variance change for various FD processes

with one change of variance. We see more and more of the area of the histogram centered

at k = 100 as the variance ratio increases. There also appears to be a small percentage

of rejections to the right of the main peak across all levels and wavelet �lters. This is to

be expected, since we are not forcing the testing procedure to stop at only one change of

variance. The small percentage of second or third variance changes (cf. Table 1) in the same

scale appear as an increase in the right tails of these histograms. With this feature in mind,

the procedure still performs quite well when the variance ratio is relatively large (� � 2),

especially in the �rst two scales. The third and fourth scales are quite spread out and not

recommended for estimating simple variance change points in practice.
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Figures 5{8 display the estimated location of variance change for various FD processes

with two variance changes. For small variance ratios (� = 1:5) the iterated CSS procedure

does a good job of locating the variance change points in the �rst scale, with mixed results

for the second scale. As before, we do not expect much information to come from looking at

higher scales. Although, as the magnitude of the variance ratio increases the higher scales

(j = 3; 4) do exhibit structure similar to the �rst two. Regardless, we shall strictly use

the �rst two scales for inference in the future. With respect to the �rst two scales, as the

variance ratio increases to, say, � = 3 or 4, then the bimodality is readily apparent. As was

the case for a single variance change, the longer wavelet �lters give a slightly more spread

out distribution for the locations of the variance changes. To be more precise, the estimated

locations appear to be skewed to the right at k1 = 250 and k2 = 350 for the D(4) and LA(8)

wavelet �lters, especially in the second scale.

4 Vertical Ocean Shear Measurements

Percival and Guttorp (1994) analyzed a set of vertical ocean shear measurements using the

wavelet variance. The data were collected by dropping a probe into the ocean which records

the water velocity every 0.1 meter as it descends. Hence, the `time' index is really depth

(in meters). The shear measurements (in s�1) are obtained by taking a �rst di�erence of

the velocity readings over 10 meter intervals and applying a low-pass �lter to the di�erence

readings. Figure 9 shows all 6875 observations available for analysis. We see two sections of

greater variability, one around 450m and the other around 1000m, with a fairly stationary

section in between. Percival and Guttorp (1994) commented on this fact and only looked at

4096 observations ranging from 489.5m to 899.0m in their paper.

The inuence of the ends of the time series (i.e., the observations outside the vertical
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dotted lines in Figure 9) is most evident when comparing its wavelet variance to the wavelet

variance between the middle 4096 observations; see Figure 10. The bursts of increased vari-

ability observed in the �rst 5 scales make a signi�cant contribution to the wavelet variance.

For those scales, the con�dence intervals do not overlap between the full and truncated time

series, whereas the con�dence intervals do overlap for all subsequent scales. This feature

hints at a possible heterogeneity of variance in the �rst 5 scales.

Figure 11 shows the MODWT wavelet coe�cients for the �rst �ve scales of the vertical

ocean shear measurements. The vertical dotted lines are the estimated locations of variance

change points using the DWT to test and the MODWT to locate with asymptotic critical

values (� = 0:05). The procedure does a good job of isolating the two regions of increased

variability at 450m and 1000m in each scale, except for the second scale. There, the �rst

burst has been `picked apart' by the procedure with 10 distinct stationary regions. This does

not seem appropriate and it is unclear why this only occurred on the second scale when the

third scale appears to be similar in changing variability with time. Besides the two obvious

regions of increased variability, there appears to be a third burst around 800m. It is present,

to di�ering degrees, in the �rst four scales whereas most other bursts disappear after the

�rst and second scale. This is a much more subtle type of nonstationarity, compared to the

obvious bursts at 450m and 1000m, and not particularly visible in the original time series

with the naked eye.

5 Conclusions

We have presented an iterated CSS algorithm for detecting and locating multiple variance

changes in time series with long-range dependence. The �rst scale of wavelet coe�cients

is quite powerful for detecting single or multiple variance change points when the variance
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ratio is a factor of 2 or greater. The second scale is also equally powerful, but when the

variance ratio is a factor of 3 or greater. This procedure also performs well at locating

single or multiple variance change points using the auxiliary test statistic computed via the

MODWT.

Currently, the procedure for detecting and locating multiple variance changes via the

DWT is in its infancy. More work is needed in order to re�ne the procedure and further

investigate its properties. Areas for future research include obtaining exact critical values for

the DWT test statistic and adapting the MODWT test statistic to not only locate but also

test for a variance change point. Given the ability of the DWT to remove heavy amounts of

autocorrelation in time series, this method has wide application in many �elds. The point

being that this test can handle high amounts of autocorrelation, as found in long memory

processes, through the fact that limited assumptions are made with respect to the underlying

spectrum of the observed time series.
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Figure 1: Estimated locations of a single variance change (k = 100) for FD processes (N =

656; d = 0:4) using the iterated CSS procedure and MODWT. The rows denote the various

wavelet �lters, the columns denote the levels of the MODWT and the variance ratio is

� = 1:5.
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Figure 2: Same as Figure 1 with variance ratio � = 2.
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Figure 3: Same as Figure 1 with variance ratio � = 3.
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Figure 4: Same as Figure 1 with variance ratio � = 4.
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Figure 5: Estimated locations of two variance changes (k1 = 251; k2 = 350) for FD processes

(N = 656; d = 0:4) using the iterated CSS procedure and MODWT. The rows denote the

various wavelet �lters, the columns denote the levels of the MODWT and the variance ratio

is � = 1:5.
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Figure 6: Same as Figure 5 with variance ratio � = 2.
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Figure 7: Same as Figure 5 with variance ratio � = 3.
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Figure 8: Same as Figure 5 with variance ratio � = 4.
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Figure 9: Plot of vertical shear measurements (inverse seconds) versus depth (meters). The

two vertical lines are at 489.5m and 899.0m, and denote the roughly stationary series used

by Percival and Guttorp (1994). This series can be obtained via the World Wide Web at

http://lib.stat.cmu.edu/datasets/ under the title `lmpavw'.

24



scale (0.1 meters)

w
av

el
et

 v
ar

ia
nc

e

1 2 4 8 16 32 64 128 256 512

0.
00

1
0.

01
0

0.
10

0
1.

00
0

-

-

-

-

-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

N = 6875

N = 4096

Figure 10: Estimated wavelet variance of the vertical ocean shear measurements using the

D(4) wavelet �lter and MODWT. The light grey con�dence intervals correspond to all 6875

observations, while the dark grey con�dence intervals correspond to the middle 4096 obser-

vations as analyzed in Percival and Guttorp (1994).
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Figure 11: Estimated locations of variance change for the vertical ocean shear measurements

using the D(4) wavelet �lter displayed on the MODWT wavelet coe�cients. Only the �rst

�ve scales were found to have signi�cant changes of variance. Asymptotic critical values

were used for the hypothesis testing at the � = 0:05 level of signi�cance.
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